A combinatorial formula for Macdonald polynomials
نویسندگان
چکیده
Abstract. In this paper we use the combinatorics of alcove walks to give a uniform combinatorial formula for Macdonald polynomials for all Lie types. These formulas are generalizations of the formulas of Haglund-Haiman-Loehr for Macdonald polynoimals of type GLn. At q = 0 these formulas specialize to the formula of Schwer for the Macdonald spherical function in terms of positively folded alcove walks and at q = t = 0 these formulas specialize to the formula for the Weyl character in terms of the Littelmann path model (in the positively folded gallery form of Gaussent-Littelmann).
منابع مشابه
A Combinatorial Formula for Non-symmetric Macdonald Polynomials
We give a combinatorial formula for the non-symmetric Macdonald polynomials Eμ(x; q, t). The formula generalizes our previous combinatorial interpretation of the integral form symmetric Macdonald polynomials Jμ(x; q, t). We prove the new formula by verifying that it satisfies a recurrence, due to Knop and Sahi, that characterizes the non-symmetric Macdonald polynomials.
متن کامل1 2 Fe b 20 07 A COMBINATORIAL FORMULA FOR NON - SYMMETRIC MACDONALD POLYNOMIALS
We give a combinatorial formula for the non-symmetric Macdonald polynomials E µ (x; q, t). The formula generalizes our previous combinatorial interpretation of the integral form symmetric Macdonald polynomials J µ (x; q, t). We prove the new formula by verifying that it satisfies a recurrence, due to Knop and Sahi, that characterizes the non-symmetric Macdonald polynomials.
متن کامل2 8 Ja n 20 06 A COMBINATORIAL FORMULA FOR NON - SYMMETRIC MACDONALD POLYNOMIALS
We give a combinatorial formula for the non-symmetric Macdonald polynomials E µ (x; q, t). The formula generalizes our previous combinatorial interpretation of the integral form symmetric Macdonald polynomials J µ (x; q, t). We prove the new formula by verifying that it satisfies a recurrence, due to Knop, that characterizes the non-symmetric Macdonald polynomials.
متن کامل2 9 N ov 2 00 6 A COMBINATORIAL FORMULA FOR NON - SYMMETRIC MACDONALD POLYNOMIALS
We give a combinatorial formula for the non-symmetric Macdonald polynomials E µ (x; q, t). The formula generalizes our previous combinatorial interpretation of the integral form symmetric Macdonald polynomials J µ (x; q, t). We prove the new formula by verifying that it satisfies a recurrence, due to Knop and Sahi, that characterizes the non-symmetric Macdonald polynomials.
متن کاملThe Schur Expansion of Macdonald Polynomials
Building on Haglund’s combinatorial formula for the transformed Macdonald polynomials, we provide a purely combinatorial proof of Macdonald positivity using dual equivalence graphs and give a combinatorial formula for the coefficients in the Schur expansion.
متن کاملCombinatorial theory of Macdonald polynomials I: proof of Haglund's formula.
Haglund recently proposed a combinatorial interpretation of the modified Macdonald polynomials H(mu). We give a combinatorial proof of this conjecture, which establishes the existence and integrality of H(mu). As corollaries, we obtain the cocharge formula of Lascoux and Schutzenberger for Hall-Littlewood polynomials, a formula of Sahi and Knop for Jack's symmetric functions, a generalization o...
متن کامل